

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada)

Accredited by NAAC with 'A+' Grade

Recognised as Scientific and Industrial Research Organisation SRKR MARG, CHINA AMIRAM, BHIMAVARAM – 534204 W.G.Dt., A.P., INDIA

Regula	tion: R23									
	ELECTRICA	L AND ELECTRO	NICS EN	GINI	EERI	NG (I	Hono	ors)	_	
	(With	COURSE ST effect from 2023-24			h onv	vards)			
Course Course Name			Year/ Sem	Cr	L	Т	P	C.I.E	S.E.E	Total Marks
B23EEH101	Electrical Machine Design		III-I	3	3	0	0	30	70	100
B23EEH201	Power Quality & Enhancement		III-II	3	3	0	0	30	70	100
B23EEH301	Advanced Power	Electronics	IV-I	3	3	0	0	30	70	100
B23EEH401	*MOOCS-I		III-I to IV-I	3	-	-	=			100
B23EEH501	*MOOCS-II	ENGINE	III-I to IV-I	3	<u>co</u>	LLE	G			100
B23EEH601	*MOOCS-III 80		III-I to IV-I	3	US					100
			TOTAL	18	12	0	0	120	280	600

*Three MOOCS courses of any **ELECTRICAL AND ELECTRONICS ENGINEERING** related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 12 weeks (3 Credits) courses other than the courses offered need to be takenby prior information to the concern. These courses should be completed between III Year I Semester to IV Year I Semester

Cour	se Cod	e Category	L	T	P	C	C.I.E.	S.E.E.	Exam
B23E	EH101	Honors	3			3	30	70	3 Hrs.
				•	-	•			
			ELE	CTRIC	AL MA	CHINE D	ESIGN		
			()	Honors I	Degree co	ourse in E	EE)		
Cours	se Obje	ctives: Studen	ts will le	arn abo	ut				
1.	The de	sign basics and	limitatio	ons of ele	ectrical m	nachine de	sign		
2.	The de	sign of DC mad	chine wir	ndings &	dimensi	ons			
3.	The de	sign of transfor	mer wind	dings, co	re, cooli	ng & insul	lation		
4.	The de	sign of Induction	on Machi	ne dime	nsions &	windings			
5.	The de	sign of Synchro	onous Ma	achine di	mension	s & windi	ngs		
Cours	se Outo	omes: At the e	nd of th	e course	, the stu	dents will	be able to		
S.No				Oı	ıtcome				Knowledge Level
1.	1. Illustrate the rating, magnetic circuits, limitations, heating and cooling aspects of DC & AC machines.								К3
2.				ndings or	nd main	dimension	s of DC Mov	ohino	K4
۷.	Design the armature, field windings and main dimensions of DC Machine. Design the core, windings, insulation, cooling and dimensions of single phase							N4	
3.	_	ir th <mark>e core, wit</mark> iree <mark>phase t</mark> rans		isulation	i, coomi	g and dim	ensions of s	ingle phase	K4
4.	_	n wi <mark>ndings, air</mark> tion Machines.	gap len	gth, cond	ductor siz	ze, stator a	and rotor dir	mensions of	K4
		the number	of slo	ts, pole	s and	develop	winding dia	agrams for	T7.4
5.	Syncl	ronous Machin	es.	-		-			K4
				;	SYLLAI	BUS			
		Fundamental A	Aspects o	of Electr	rical Mad	chine Des	ign:		
UNI		Design of M		_				•	•
(10H)		specification,				uits, mag	gnetization	curves, hea	ting, cooling,
		emperature rise	with she	ort term	rating.				
	<u> </u>	D.C Machines:							
UNI	L-II	Construction d		\ rmature	windir	nge Com	mutator De	esion of ou	tout equation
(10 F	ire)	Selection of No				_		•	tput equation,
			. 31 POIO	.,					
		Transformers:							
UNIT		Classification o	f Transf	ormers,	core cor	struction,	types of wi	inding and d	esign, cooling
(10 H		and insulation,					• 1	· ·	
	:	elation between	n core are	ea and w	eight of	iron and c	opper, optim	num design.	

		Three phase Induction Machines:					
UNIT	Γ-IV	Stator, stator frames, rotor, rotor windings, comparison of squirrel cage and wound rotors,					
(10 H	Hrs)	slip rings, design of output equation, main dimensions, stator winding, design of squirrel					
		cage rotor and wound rotor.					
		Three phase Synchronous Machines:					
UNI	T-V	Output equation, main dimensions for salient and non-salient pole machines, armature					
(10 H	Hrs)	windings and design, selection of stator slots, air gap length, design of rotor for salient					
		pole and turbo alternators.					
Textb	ooks						
1.	Saw	hney AK, "A Course in Electrical Machine Design", Dhanpat Rai & Sons, 4 th edition, 2017.					
2.	R.K	. Agarwal "Principles of Electrical Machine Design" S.K. Kataria & Sons, 5 th edition, 2014.					
Refer	ence	Books:					
1	Clay	ton A.E., "The performance and design of D.C. Machines", Published by Isaac Pitman and					
1.	Son	ons Ltd, 1 st edition.					
2.	Say	MG, "The performance and design of A.C. Machines", Published by Isaac Pitman and Sons					
۷.	Ltd,	3 rd edition.					
e-Res	ource	s:					
1	http	ov/metal as in/sources/109106022					

1. https://nptel.ac.in/courses/108106023

ENGINEERING COLLEGE
AUTONOMOUS

Estd. 1980

Tim		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
Tim		III B.Tech. I Semester MODEL QUESTION PAPER			1120
Tim		ELECTRICAL MACHINE DESIGN			
Tim		(Honors Degree course in EEE)			
T 1111	e: 3 H		Iax. M	Iarks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2	= 20 N	
			CO	KL	M
1.	a).	List any two design factors considered in machine design.	1	3	2
	b).	What is the significance of heating in electrical machines?	1	4	2
	c).	What factors affect the design of the output equation of a DC machine?	2	4	2
	d).	Define magnetic reluctance in a DC machine.	2	4	2
	e).	What is the purpose of using laminated cores in transformers?	3	4	2
	f).	What is the significance of the ratio of iron loss to copper loss in transformer design?	3	4	2
	g).	What is the main difference between a squirrel cage rotor and a wound rotor?	4	4	2
	h).	Name any two factors that influence the main dimensions of an induction motor.	4	4	2
	i).	Why is the air gap length important in machine design?	5	4	2
	j).	What is the purpose of damper windings in a salient pole alternator?	5	4	2
	1		5 x 10	= 50 N	<u> Iarks</u>
		UNIT-1			
2.	a).	Write the limitations involved in designing electrical machines	1	3	5
	b).	Explain different methods for cooling of electrical machines?	1	3	5
		OR			
3.		State and explain the factors which govern the choice of specific magnetic loading and specific electric loading.	1	3	10
		UNIT-2			
4.	a).	Derive the output equation of a DC Machine in terms of its main dimensions.	2	4	5
	b).	A 4-pole wave wound armature has 230 conductors and 23 Commutator segments. Give the table of winding connections in terms of coin sides. Choose a Retrogressive winding.	2	4	5

5.	a).	List out the procedure involved in the design of shunt field winding and	2	4	5
	u).	series field winding.		-т	
	b).	A 4-pole, 25 HP, 500V, 600 rpm series motor has an efficiency of 82%. The pole faces are square and the ratio of pole arc to pole pitch is 0.67. Take Bav=0.58 wb/m2 and ac=17000 ampere conductors/meter. Obtain the main dimensions of the core.	2	4	5
		UNIT-3			
6.		Explain how heat generated in a transformer can be managed. Give a detailed scheme.	3	4	10
		OR			
7.		Derive an expression for output in KVA in terms of its main dimensions for 3-phase transformer.	3	4	10
		UNIT-4			
8.	a).	Derive the output equation of an Induction motor.	4	4	5
	b).	Find the value of diameter and length of stator core of a 7.5KW, 220V, 50Hz, 4 pole, 3-phase induction motor for best power factor. Magnetic loading=0/4 wb/m2; Sp. Electric loading=22000A/m, Efficiency=0.86; power factor=0.87. core length/pole pitch= 1.0.	4	4	5
		OR			
9.	a).	Write the rules for selecting stator and rotor slots of three phase slip ring induction motor?	4	4	5
	b).	Determine the main dimensions, no of turns per phase, conductor cross section and slot area of a 250 HP, 3phase ,50HZ, 400v, 1410 rpm slip ring induction motor. Assume specific magnetic loading Bav=0.5T, specific electric loading ac=30000 ampere conductors per meter, efficiency is 90%, winding factor is 0.955, current density is 3.5 A/sq mm. The slot space factor is0.4 and ratio of core length to pole pitch is 1.2. The machine is delta connected	4	4	5
		UNIT-5			
10.	a).	Give the various factors to be considered for the selection of stator slots of a 3- phase alternator.	5	4	5
	b).	Determine the main dimensions of a 25 MVA, 50 Hz, 3-phase turbo alternator, given mean gap density=0.5 Tesla, specific electric loading of 550 ampere conductors per cm. of armature periphery; peripheral speed should not exceed 145 m/s; Air gap is 3 cm.	5	4	5
		OR			
11.		Give the developed view for the R-phase of a 3-phase, 4 pole, 24 slots, and star connected lap winding with coil short pitched by one slot. Each slot contains two coil sides. Phase sequence is RYB.	5	4	10

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

Cou	rse Coo	le Category	L	T	P	C	C. I. E	S. E. E	Exam		
B23	EEH20	1 Honor	3			3	30	70	3 Hrs		
			DOWER			· · · · · ·					
					TY ENE						
Cours	za Ohia	ectives: Students			gree cours	se ili eed	2)				
1.					improven	nent and	standards				
2.		About the significance of Power Quality improvement and standards About Passive Shunt Series Compensators									
3.		the Operation an				Compens	sators				
4.		t Active Series Co									
5.		analysis and Des				-					
			-6			<u>-</u>					
Cours	se Outo	comes: At the end	d of the c	ourse, th	ne studen	ts will b	e able to				
S.No				Outo	omo				Knowledg		
3.110	Outcome								Level		
1.	Apply the knowledge of Power Quality issues to explore and classify mitigation techniques.								К3		
2.		ate the Passive Sh cem <mark>ent</mark>	unt and	Series Co	mpensato	ors for po	wer quality		К3		
3.	Analyze the Active Series Compensators for mitigation of power quality issues								K4		
4.	Analy	ze the topologies	and oper	ation of A	Active Sh	unt Com	pensators	<u> </u>	K4		
5.	Analy	ze the working of	Unified	Power Q	uality Co	mpensate	ors	Q.E.	K4		
		Estd. 1980			RUIU	iańiai ń	(UN)				
					LLABUS						
UNI' (10 H	T-I Irs)	Long Duration Voltage variations. Voltage Imbalance. Waveform Distortion, Volt.									
UNIT-II (10 Hrs)											
UNIT		Active Shunt Con Introduction, Cla	-		STATCO	Ms, Prin	ciple of O	peration ar	nd Control (
(10 H	· ·	DSTATCOMs (si Design of DSTAT		se PQ ar	nd DQ th	eory-bas	ed control a	algorithms),	Analysis ar		

	Active Series Compensation:					
UNIT						
(10 F						
,	control, Analysis and Design of Active Series Compensators					
	Unified Power Quality Compensators:					
TINIT	Introduction, State of the Art on Unified Power Quality Compensators, Classification of					
UNI	Unified Power Quality Compensators, Principle of Operation and Control of Unified					
(10 H	Power Quality Compensators - Synchronous reference frame theory-based control,					
	Analysis and Design of Unified Power Quality Compensators.					
Text l	Books:					
1.	Bhim Singh, Ambrish Chandra, Kamal Al-Haddad, "Power Quality Problems and Mitigation					
1.	Techniques" Wiley Publications, 2015.					
2.	Power Quality Enhancement Using Custom Power Devices – Power Electronics and Power					
۷.	Systems, Gerard Ledwich, Arindam Ghosh, Kluwer Academic Publishers, 1 st ed,2002.					
Refer	ence Books:					
1.	Understanding Power Quality Problems: Voltage Sags and Interruptions, Bollen M H J, First					
1.	Edition, IEEE Press; 2000.					
2.	Instantaneous Power Theory and Applications to Power Conditioning, Hirofumi Akagi, Edson					
۷.	Hirokazu Watanabe, Mauricio Aredes, A John Wiley & Sons, INC., Publications, 2007.					
e-reso	ources: ENGINEERING COLLEGE					
1.	Power Quality- https://nptel.ac.in/courses/108102179					
2.	Power Quality Enhancement - nptel.ac.in/courses/108107157					

		Course C	out. I)4JEE	
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. II Semester MODEL QUESTION PAPER			
		POWER QUALITY ENHANCEMENT			
T.•	2.1	(Honors Degree course in EEE)	<i>a</i>		70 N
1 im	e: 3 F		Iax. N	iarks:	70 N
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary	10 2	20.1	/[awl=
			10 x 2 CO	KL	M
1.	a).	Define power quality.	1	2	2
1.	b).	Explain the major power quality issues in power systems?	1	2	2
	c).	Explain the major power quanty issues in power systems? Explain the effect of shunt capacitors on power systems?	2	2	2
	d).	Give the limitations of passive compensation techniques?	2	2	2
	e).	Explain the role of the DC link capacitor in a DSTATCOM?	3	2	2
	f).	Which type of converter is commonly used in DSTATCOMs? Why?	3	2	2
	+	Give the classification of Active Series Compensation	4	2	2
	g). h).	Explain the purpose of series compensation in power systems?	4	2	2
	i).	Give the classification of Unified Power Quality Compensators	5	2	2
	j).	Differentiate between UPQC–Q and UPQC–P	5	2	2
	J)•	AUTAMAMAM	3	4	4
		Estd. 1980 AUTOROMOUS	5 x 10	– 50 N	
		UNIT-1	CO	KL	M
2.	a).	Classify the general power quality problems and explain	1	3	5
<u></u>	b).	Explain how end user equipment are affected by power quality problems	1	3	5
		OR			
3.	a).	Illustrate briefly about the following power quality problems A) Long duration variations B) Voltage unbalance C) Power Frequency Variations	1	3	5
	b).	Explain the overview of mitigation methods of power quality	1	3	5
	1	UNIT-2			
4.	a).	Compare series and shunt compensation	2	3	5
	b).	Illustrate the design of Shunt Compensators for Power Factor Correction	2	3	5
		OR			
5.	a).	Explain the principle of operation of passive shunt compensation	2	3	5
	b).	A single-phase load having $ZL=(4.0+j1.0)$ pu is fed from an AC	2	3	5

		supply with an input AC voltage of 230V at 50 Hz and a base impedance of 4.15Ω . It is to be realized as a unity power factor load on the AC supply system using a shunt connected lossless passive element			
		(L or C). Calculate (a) the value of the compensator element (in farads or Henries) and (b) equivalent resistance (in ohms) of the compensated load.			
		TINITE 2			
		UNIT-3			
6.	a).	Explain the design procedure of Shunt Compensators for Power Factor Correction.	3	4	5
	b).	Classify DSTACOMs	3	4	5
		OR			
7.	a).	Explain the operation of DSTATCOM used for sag mitigation	3	4	5
	b).	Illustrate the control of DSTACOM with single phase PQ theory-based control algorithm	3	4	5
		UNIT-4			
8.	a).	Explain synchronous reference frame-based control strategy for DVR	4	4	5
	b).	Explain the state of art on Active Series Compensators	4	4	5
		OR			
9.	a).	Classify different types of series active compensators	4	4	5
	b).	Explain the design procedure of DVR	4	4	5
		ENGINEERING COLLEGE			
		Estd 1980 UNIT-5 UTONOMOUS			
10.	a).	Give the classification of Unified Power Quality Compensators	5	4	5
	b).	Explain the design procedure of UPQC	5	4	5
		OR			
11.	a).	Explain the Synchronous Reference Frame theory-based control of UPQCs	5	4	10

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

Cou	rse Cod	e Category	L	T	P	C	C. I. E	S. E. E	Exam		
B23	EEH30 2	Honor	3			3	30	70	3 Hrs		
			ADVAN	CED PO	WER E	LECTRO	ONICS				
			(Но	nors Deg	gree cour	se in EEE	E)				
Cours	se Objec	tives: Students	will lear	n about							
1.	The wo	orking principle,	types and	l applicat	tions of n	on-isolat	ed converte	rs.			
2.		The modelling techniques for DC-DC converters using state-space, circuit averaging, and									
		cal models to de									
3.		orking principle,									
4.		sign of power el			s to impr	ove powe	r quality.				
5.	The M	odulation techni	ques for I	nverters.							
Cours	se Outco	omes: At the en	d of the c	ourse, th	ne studer	ts will b	e able to				
S.No				Outo	ome				Knowledg		
	A 1	16 16 . 1			1.1	•		1,	Level		
1.	Analyze non-isolated converter topologies and determine the input-output voltage relationships.										
2.		an <mark>d d</mark> erive tran ario <mark>us av</mark> eragin						converters	K4		
3.	_	e is <mark>olated c</mark> onv nships for variou						put voltage	K4		
4.	Analyz	e multi-pulse A	C-DC con	verters,	power fac	ctor impr	ovement tec	chniques.	K4		
5.	Explor	e various modul	ation tech	niques u	sed for in	verters.			K4		
	l								•		
				SY	LLABU	S					
	N	on-isolated DC	C-DC Con	verters:							
UNI		uck, Boost, Bu						-	-		
(10 F	*	utput voltages, l	Design of	critical i	inductanc	e and ca	pacitance for	or Buck, Boo	ost and Buck		
	b	oost converters.									
UNI	I'-II	Iodelling of No					adal fan hu	als baaas am	ممط بامنیط ام		
(10 F	irs)	verage switch a onverters.	moder and	i Averag	ged state	space in	oder for bu	ck, boost an	id buck-boo		
	C	onverters.									
	T	solated DC-DC	converte	rc•							
UNIT	[,-III ^E				onverters	s in DCI	M and CC	M modes -	Relationshi		
	Hrs) Forward, Fly-back & Push-pull converters in DCM and CCM modes - between input and output voltages.										

		Front-End (AC-DC) Converters:					
		Multi-pulse converters 6 & 12 pulse converters, Phase shifting transformers, Conventional					
UNIT		methods of power factor improvements: Semi-converter, Extinction angle control,					
(10 H	Hrs)	Symmetrical angle control – active front-end converters - Single phase: Boost PWM					
		rectifiers.					
	<u> </u>						
		Modulation Techniques:					
		Three-phase Two level H-Bridge Inverter - Sinusoidal pulse width modulation (SPWM),					
UNIT-V		Third Harmonic Injected SPWM, Space Vector PWM (SVPWM).					
(10 H	Hrs)	Three-phase Five level cascaded H-Bridge Inverter - Phase Disposition (PD), Phase					
		Opposition Disposition (POD), Alternate Phase Opposition Disposition (APOD) carrier					
		modulation schemes with SPWM Technique.					
Text l	Books	:					
1.	Ned	Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design',					
1.	John	Wiley and sons.Inc, Newyork, 2 nd Edition, 1995.					
2.	Rash	id M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, 4 th					
۷.	Editi	on, New Delhi 2017.					
Refer	rence I	Books:					
1.	Erick	kson R W,' Fundamentals of Power Electronics', Chapman and Hall, 2 nd Edition, 2004.					
2.	Hart,	Daniel W., and Daniel W. Hart. Power electronics. New York: McGraw-Hill, 2010.					
e-reso	ources	ENGINEERING COLLEGE					
1.	nptel	.ac.in/courses/108107128					
2.	nptel	.ac.in/courses/108108035					

		Course C SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)	out. I)4JEC	R23
					K23
		IV B.Tech. I Semester MODEL QUESTION PAPER ADVANCED POWER ELECTRONICS			
Tim	e: 3 H	(Honors Degree course in EEE)	Iax. N	[awlras	70 M
1 1111	e: 3 F		Tax. IV.	iarks:	/U IVI
		Answer Question No.1 compulsorily Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
		·	10 x 2	_ 20 N	
			CO	KL	M
1.	a)	Derive the output voltage relation for Buck converter	1	2	2
1.	a).	Derive the output voltage relation for Buck converter How does the polarity of output voltage in a buck-boost converter differ	1	_	
	b).	from that of a buck converter?	1	2	2
	c).	What is meant by the average switch model of a converter?	2	2	2
	d).	Write the state variables commonly used in modeling DC-DC	2	2	2
		converters.			
	e).	State the applications of Flyback converter	3	2	2
	f).	Derive input and output voltage for forward converter What is the purpose of a phase chifting transformer in a multi-pulse.	3	2	2
	g).	What is the purpose of a phase-shifting transformer in a multi-pulse converter?	4	2	2
	h).	What is the advantage of using a 12-pulse converter over a 6-pulse converter?	4	2	2
	i).	Distinguish the difference between PD, POD and APOD?	5	2	2
	j).	Explain the advantages of space vector compared SPWM	5	2	2
	T		5 x 10	= 50 N	Aark
		UNIT-1			
2.		Derive the critical value of inductance and capacitance for Boost Converter	1	3	10
		OR			
3.		Derive the critical value of inductance and capacitance for Buck-Boost Converter	1	3	10
		UNIT-2		_	
4.		Explain the average state space model for Buck converter	2	3	10
		OR		_	
5.		Explain the average state space model for Boost converter	2	3	10
		UNIT-3			
6.		Explain the operation of Flyback converter in continuous conduction	3	3	10

	mode			
	OR			
7.	Explain the operation of Push-Pull converter in continuous conduction mode	3	3	10
	UNIT-4			
8.	Briefly explain the conventional methods for power factor improvement?	4	3	10
	OR			
9.	Explain the operation of 12 pulse converter with neat diagrams	4	3	10
	UNIT-5			
10.	Explain space vector pulse width modulation technique for 3 phase two level inverter.	5	3	10
	OR			
11.	Explain three phase five level cascaded MLI with APOD carrier based SPWM technique with necessary waveforms.	5	3	10

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

ENGINEERING COLLEGE
AUTONOMOUS