

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada)

Accredited by NAAC with 'A+' Grade

Recognised as Scientific and Industrial Research Organisation SRKECR MARG, CHINA AMIRAM, BHIMAVARAM – 534204 W.G.Dt., A.P., INDIA

Regulation: R23

ELECTRONICS AND COMMUNICATION ENGINEERING (Honors)

COURSE STRUCTURE

(With effect from 2023-24 admitted Batch onwards)

	(With effect from 2023 24	aammeea	unitted Daten onwards)						
Course Code	Course Name	Year/ Sem	Cr	L	Т	P	C.I.E	S.E.E	Total Marks
B23ECH101	Advanced Digital Design	III-I	3	3	0	0	30	70	100
B23ECH201	Design Verification using Verilog HDL	III-II	3	3	0	0	30	70	100
B23ECH301	Design Verification using Verilog HDL Laboratory	III-II	1.5	0	0	3	30	70	100
B23ECH401	Design Verification using System Verilog	IV-I	3	3	0	0	30	70	100
B23ECH501	Design Verification using System Verilog Laboratory	IV-I	1.5	0	0	3	30	70	100
B23ECH601	*MOOCS-I	III-I to IV-I	3		-	-			100
B23ECH701	*MOOCS-II	III-I to IV-I	3						100
	•	TOTAL	18	9	0	6	150	350	700

*Three MOOCS courses of any **ELECTRONICS AND COMMUNICATION ENGINEERING** related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 12 weeks (3 Credits) courses other than the courses offered need to be taken by prior information to the concern. These courses should be completed between III Year I Semester to IV Year I Semester

Cours	se Code	Category	L	T	P	С	C.I.E.	S.E.E.	Exam		
B23E	CH101	Honors	3	-		3	30	70	3Hrs		
				•	•						
			AD	VANCE	ED DIGI	TAL DES	SIGN				
			(H	onors D	egree Co	urse in E	ECE)				
Cour	se Obje										
1.		Γο design sequential circuits, FSMs, memory devices, and programmable logic devices neluding FIFO and glitch analysis									
2.	To model programs in Verilog HDL for digital system design using behavioral, dataflow, and										
۷.	l	structural mode	lling								
Cour	se Outc	omes: By the e	nd of this	s course,	students	will be al	ole to		Γ		
S.No				Ou	itcome				Knowledge		
1.	Dogia	n sequential circ	mita nair	va lotobo	a flin fla	na ragista	are and coun	tora	Level K3		
2.		ze finite state m							K4		
3.	·	ate memory ard					аррисаноны	•	K3		
		the concepts of					Ds) and FPG	A for digital			
4.	design		\			(1			К3		
5.	Devel	op di <mark>git</mark> al cir <mark>cui</mark>	ts using	Verilog	HDL witl	n differen	t modeling t	echniques.	К3		
			題								
			27		SYLLAB	US	COLL	CCC.			
		Sequential Circu					MUULL	EGE			
UNI	1-1	Latches & Flip Flops, Excitation tables, FF Conversions, Delays in sequential circuits,									
(10F	irs)	Setup & hold times, Registers- bi-directional shift register, universal shift register, Counters- Johnson counter, ring counter, Sequence generators.									
	'	Counters- Johns	on coun	iei, iiiig (counter, s	sequence	generators.				
		Einita Stata Mac	phina								
UNI	1-11	Finite State Machine Mealy & Moore Machine, Sequence detectors, State Machine Examples(3-bit)									
(10 I	.118)			-, = - 4 40				r223(2 0	-/		
UNIT	[-]]]	Memories									
(8 H		Classification of	f Memor	ies, FIFO), Glitche	S					
TIN 12 0		Programmable I	Logic De	vice							
UNIT	T\ 1	ntroduction to	PROM,	PAL &	PLA, F	PGA-Arc	hitecture, O	rganization,	Programming		
(10 Hrs) technologies											
				IDI							
	-	1	Introduction to Verilog HDL:								
TINIT			Ū		ruote and	Conventi	one:				
UNI' (10 I	T-V	ntroduction to Verilog as HDL ntroduction, W	Langua	ge Const				words and Id	entifiers Data		

	Introduction- Behavioral Modeling, Dataflow Modeling, Structural Modeling							
Text	books:							
1.	Fundamentals of Logic Design by Charles H. Roth Jr, JaicoPublishers,2006							
2.	Verilog HDL - Samir Palnitkar, 2nd Edition, Pearson Education, 2009.							
Refe	rence Books:							
1.	Switching and finite automata theory Zvi.Kohavi, Niraj.K.Jha 3rd Edition,Cambridge							
1.	UniversityPress,2009.							
2.	Stephen M. Trimberger, "Field Programmable Gate Array Technology", Springer International							
2.	Edition.							
3.	T.R. Padmanabhan, B Bala Tripura Sundari, Design Through Verilog HDL, Wiley 2009.							
e-Re	sources							
1.	https://www.chipverify.com/tutorials/verilog							

	Course Co	de: B2	23ECI	H101
	SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
	III B.Tech. I Semester MODEL QUESTION PAPER			
	ADVANCED DIGITAL DESIGN			
	(Honors Degree Course in ECE)			
ne: 3	Hrs. Ma	x. Ma	rks: 7	70 M
	Answer ONE Question from EACH UNIT			
	All questions carry equal marks			
	Assume suitable data if necessary			
	1	0 x 2 =	= 20 N	Iarks
		CO	KL	M
a).	What is the difference between a latch and a flip-flop?	1	1	2
b).	Explain the significance of setup and hold times in sequential circuits.	1	2	2
c).	Differentiate between Mealy and Moore state machines	2	2	2
d).	What are the advantages of using state machines in digital design?	2	3	2
e).	What is FIFO memory, and where is it used?	3	3	2
f).	Define glitches in memory	3	1	2
g).	Differentiate between PAL and PLA	4	1	2
h).	What are the key architectural components of an FPGA?	4	2	2
i).	What are the different modeling styles in Verilog HDL?	5	1	2
j).	Explain the significance of registers and nets in Verilog HDL.	5	2	2
•	Estd. 1980 Au 1 0 N 0 N 0 N 0 5	x 10 =	= 50 N	Iarks
	UNIT-1			
a).	Describe the process of converting one flip-flop type to another using excitation tables.	1	2	5
b).	Discuss the design and working of a Johnson counter with timing diagrams	1	4	5
	OR			
	Design a 3-bit synchronous counter using JK flip-flops and explain the working process.	1	3	10
	UNIT-2			
a).	Explain the working of a 3-bit sequence detector using a state machine.	2	3	5
b).	What is a state diagram, and how is it used in FSM design?	2	1	5
	OR			
	Construct a sequence detector that identifies the pattern '101' using a Mealy machine.	2	3	10
	IINIT-3			
	a). b). c). d). g). i). j). a).	III B.Tech. I Semester MODEL QUESTION PAPER ADVANCED DIGITAL DESIGN (Honors Degree Course in ECE) ne: 3 Hrs. Answer ONE Question from EACH UNIT All questions carry equal marks Assume suitable data if necessary 1 a). What is the difference between a latch and a flip-flop? b). Explain the significance of setup and hold times in sequential circuits. c). Differentiate between Mealy and Moore state machines d). What are the advantages of using state machines in digital design? e). What is FIFO memory, and where is it used? f). Define glitches in memory g). Differentiate between PAL and PLA h). What are the key architectural components of an FPGA? i). What are the different modeling styles in Verilog HDL: Extd. 1960 5 UNIT-1 Describe the process of converting one flip-flop type to another using excitation tables. b). Discuss the design and working of a Johnson counter with timing diagrams OR Design a 3-bit synchronous counter using JK flip-flops and explain the working process. UNIT-2 a). Explain the working of a 3-bit sequence detector using a state machine. b). What is a state diagram, and how is it used in FSM design? OR Construct a sequence detector that identifies the pattern '101' using a Mealy	III B.Tech. I Semester MODEL QUESTION PAPER ADVANCED DIGITAL DESIGN (Honors Degree Course in ECE) ie: 3 Hrs. Max. Max Answer ONE Question from EACH UNIT All questions carry equal marks Assume suitable data if necessary 10 x 2 : CO a). What is the difference between a latch and a flip-flop? 1 b). Explain the significance of setup and hold times in sequential circuits. 1 c). Differentiate between Mealy and Moore state machines 2 d). What are the advantages of using state machines in digital design? 2 e). What is FIFO memory, and where is it used? 3 f). Define glitches in memory 3 g). Differentiate between PAL and PLA 4 h). What are the key architectural components of an FPGA? 4 i). What are the key architectural components of an FPGA? 4 i). What are the different modeling styles in Verilog HDL: 5 Extend 1960 5 x 10: UNIT-1 a). Explain the significance of registers and nets in Verilog HDL. 5 Extend 1960 5 x 10: UNIT-1 a). Describe the process of converting one flip-flop type to another using excitation tables. 1 Describe the process of converting one flip-flops and explain the working process. 1 UNIT-2 a). Explain the working of a 3-bit sequence detector using a state machine. 2 b). What is a state diagram, and how is it used in FSM design? 2 Construct a sequence detector that identifies the pattern '101' using a Mealy machine.	III B.Tech. I Semester MODEL QUESTION PAPER ADVANCED DIGITAL DESIGN (Honors Degree Course in ECE) ie: 3 Hrs.

6.	a).	Explain the differences between static and dynamic memory technologies.	3	2	5
	b).	List different types of memory devices with examples.	3	1	5
		OR			
7.		Describe the working principle of FIFO memory and its applications.	3	2	10
		UNIT-4			-
8.		Explain how antifuse and flash programming technologies work in FPGAs.	4	2	10
		OR			
9.	a).	Explain in detail about FPGA architecture	4	2	5
	b).	Design a simple combinational circuit using a PLA	4	3	5
		UNIT-5			+
10.	a).	Design a 2-to-4 decoder using behavioral modeling in Verilog.	5	3	10
		OR			
11.	a).	Explain the differences between behavioral and structural modeling.	5	2	5
	b).	What is a testbench in Verilog, and what is its purpose?	5	1	5

CO-COURSE OUTCOME

Estd. 1980

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 10 marks

Page **5** of **17**

Course	e Code	Category	L	Т	P	C	C.I.E.	S.E.E.	Exam	
B23 E	CH201	Honors	3	-		3	30	70	3Hrs	
				•			•			
DESIGN VERIFICATION USING VERILOG HDL										
(Honors Degree Course in ECE)										
Cour	se Objec	tives:								
1.		To understand the ASIC design flow and the fundamental Verilog constructs used for hardware modeling and verification.								
2.	_	ement data typ escription and	_	_	cedural t	olocks, and	d assignment	ts in Verilog	for digital	
3.	parallel	yze timing con Verilog block	S.				_		_	
4.		elop test bench e systems.	ies, tasks	s, and fur	nctions fo	or efficien	t and reusab	ole verification	on of complex	
Cour	se Outco	mes: By the en	nd of this	s course,	students	will be ab	le to			
S.No		COUNTY OF		Ou	tcome				Knowledge Level	
1.	compor		3)						К3	
2.	Implen Verilog	nent <mark>data typ</mark>es g.	s, operato	ors, and p	rimitives	for funct	ional represe	entation in	К3	
3.	Develo assignn	p Testbenches nents.	using ar	rays, mer	nories, s	ystem task	s, and proce	dural	К3	
4.		y and resolve rencies in Veril			ming iss	ues, and e	xecution ord	ler	K4	
5.	_	tasks and fun re circuits.	ctions fo	or modula	ar and ef	ficient ve	rification of	complex	K4	
				S	SYLLAB	SUS				
UNI (10H		SIC Flow, Molocks.	odule dec	claration	and Inst	antiation,	Components	s of simulatio	on, Procedural	
UNIT-II Lexical convections, Data types, Module Parameters, Operators, Primitives, Functional representation in Verilog										
UNIT		rrays, Memor	ries, Sy	stem tas	sks, com	ipiler Dii	rectives, Co	ontinuous ar	nd Procedural	

UN	IT-IV	Race Condition, Examples of Blocking & non blocking statements, Conditional Statements,								
(10	Hrs)	loops Statements, Timing Controls Sequential and Parallel Blocks								
		Tasks and Functions, Difference between task and Function, declaration, invocation.								
IIN	NIT-V	Introduction to Logic Synthesis-A Basic Introduction to Translation and Mapping								
	Hrs)	Theoretical Concepts. (Reference Textbooks-Chapter 9,pp 275,Verilog HDL: A Guide to								
(10	, 1113)	Digital Design and Synthesis by Samir Palnitkar-2nd Edition, 2003, J.Bhasker-Latest								
		edition, year of Publication)								
Tex	tbooks:									
1.	Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis," 2 nd Edition, Pearson									
1.	Educat	ion.								
2.	Stephe	ephen Brown &ZvonkoVranesic, "Fundamentals of Digital Logic with Verilog Design,"								
2.	McGra	AcGraw- Hill.								
Ref	erence l	Books:								
1.	Bhaske	er J., "A Verilog HDL Primer," 3 rd Edition, Springer.								
2.	Perry I	Douglas, "Verilog HDL," 5 th Edition, McGraw-Hill.								
3.	Michae	el Ciletti, "Advanced Digital Design with the Verilog HDL," Prentice Hall.								
e-R	esource	s								
1.	https://	archive.nptel.ac.in/noc/courses/noc16/SEM2/noc16-ec08/								
2.	https://	onlinecourses.nptel.ac.in/noc20_ee76/preview								

ENGINEERING COLLEGE
AUTONOMOUS

		Course Co	de: B	23EC	1
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. II Semester MODEL QUESTION PAPER			
		DESIGN VERIFICATION USING VERILOG HDL			
		(Honors Degree Course in ECE)			
Tin	ne: 3		70 M	[
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
		1		= 20 N	
			CO	KL	M
l.	a).	What are the key steps in the ASIC design flow?	1	2	2
	b).	Differentiate between module declaration and module instantiation in Verilog.	1	3	2
	c).	What are module parameters in Verilog, and why are they used?	2	2	2
	d).	Differentiate between continuous assignment and procedural assignment in Verilog.	2	3	2
	e).	How are arrays used for memory modeling in Verilog?	3	3	2
	f).	What is the purpose of \$monitor and \$display system tasks in Verilog?	3	1	2
	g).	What is a race condition in Verilog, and how can it be avoided?	4	2	2
	h).	Give one example each of blocking and non-blocking assignments in Verilog.	4	3	2
	i).	What is the difference between a task and a function in Verilog?	5	2	2
	j).	How is a function invoked in Verilog? Provide a basic syntax.	5	2	2
					•
		5	x 10 =	= 50 N	Iark
		UNIT-1			
2	a).	Explain the steps involved in the ASIC design flow with a brief description of each step.	1	2	5
2.	b).	Write a Verilog module for a 2-input AND gate and show how to instantiate it in another module.	1	3	5
		OR			
	a).	What are procedural blocks in Verilog? Explain the differences between initial and always blocks with examples.	1	4	5
3.	b).	Describe the role of lexical conventions in Verilog. What are the different types of tokens used in Verilog coding?	1	2	5
		UNIT-2			
4.	a).	Explain the different data types in Verilog with examples.	2	2	5
₹.	b).	Write a Verilog module using parameters to define a 4-bit adder. Explain	2	3	5

		how parameters improve design flexibility.			
		OR			
	a).	Describe the different types of operators in Verilog with examples.	2	2	5
5.	b).	What are primitives in Verilog? Explain their role in functional representation with an example of a gate-level model.	2	4	5
		UNIT-3			
	a).	Describe the role of compiler directives in Verilog with examples of any three commonly used directives.	3	3	5
6.	b).	Illustrate the use of continuous and procedural assignments in Verilog with suitable code examples.	3	4	5
		OR			
7.	a).	Write a Verilog code to demonstrate the use of \$time, \$strobe, and \$finish system tasks, and explain their outputs.	3	4	5
7.	b).	Explain the use of arrays in Verilog for memory modeling with a suitable example.	3	4	5
		UNIT-4			
		Differentiate between blocking and non-blocking statements with suitable			
8.	a).	Verilog code examples.	4	3	5
	b).	Explain the different types of timing controls in Verilog with examples.	4	3	5
		OR			
9.	a).	Describe different types of conditional statements in Verilog and explain their usage with examples.	4	3	5
9.	b).	Compare sequential and parallel blocks in Verilog. Give examples to illustrate their differences.	4	4	5
		UNIT-5			
10.	a).	Write a Verilog program that uses both a task and a function to perform arithmetic operations (such as addition, subtraction, multiplication, and division). Explain the program step by step, highlighting the declaration, invocation, and execution flow.	5	4	10
		OR			
11	a).	Explain the differences between tasks and functions in Verilog with examples.	5	3	5
11.	b).	Describe how arguments are passed to tasks and functions in Verilog. Give examples for both.	5	4	5

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE : Questions can be given as A,B splits or as a single Question for 10 marks

Course	Code	Category	L	T	P	С	C.I.E.	S.E.E.	Exam	
B23E0	CH301	Honors			3	1.5	30	70	3 Hrs.	
						<u>I</u>			<u>I</u>	
DESIGN VERIFICATION USING VERILOG HDL LABORATORY										
			(H	onors D	egree Cou	rse in E0	CE)			
Course	Objectiv	es:								
		liarize student Computer Arc			_		cepts of Di	gital Signal P	rocessing	
		ance students'					synthesis	methodologie	s for Error	
,	Detection and Correction, Image Processing.									
•										
Course	Outcom	es: Students v	vill be a	ble to						
S.No				0	utcome				Knowledge	
									Level	
		HDL (Hardw						us digital	К3	
		ocessing appl HDL (I	ications Hardwa					rams for		
2.	Develop Commun	ications.	aruwa	re De	scription	Langua	ge) prog	rains for	К3	
1			re Desc	ription I	anguage)	programs	for image i	processing	K4	
1	Design HDL (Hardware Description Language) programs for image processing applications									
	•									
	4		9		SYLLABU	JS				
Any Fou	ır Expe	riments		ENG	MEE	RING	COLL	EGE		
1	Design	and implemen	t a Fini	te Impul	se Respon	se (FIR) f	filter.			
2	Extend	the basic AL	U to pe	erform f	loating-po	int additi	on, subtrac	tion, multipli	cation, and	
	division									
4	-	ent a Direct Mand peripher.	•	Access	(DMA) co	ntroller th	nat manages	s data transfer	between	
		ent Hamming		and Cvc	lic Redun	dancy Ch	neck (CRC)) for error de	tection and	
4	correction	_	2000	Uj C	TOGGI			, 101 01101 40	unu	
		a module tha	t conve	erts an R	RGB imag	e to a gra	ayscale ima	age using the	luminance	
3	formula	. Implement tl	ne desig	gn using	behaviora	l modelin	g in Verilo	g.		
6	Assignn	nent-1								
7	Assignn	nent-2								
EDA To	ools/Hai	rdware Requi	ired:							
		ool that suppo								
		e/Synopsys/Ta				•				
		computer wi	th appr	opriate (Operating S	System th	at supports	the EDA tool	S.	
Referen										
		Systems Desig								
2	Digital 1	Digital Design with Verilog - Course (nptel.ac.in)								

3	https://www.sciencedirect.com/topics/computer-science/finite-impulse-response-filter
4	https://embeddedwala.com/Blogs/embeddedsystem/what-is-dma

Cour	se Code	Category	L	T	P	С	C.I.E.	S.E.E.	Exam		
B23E	CH401	Honors	3			3	30	70	3 Hrs.		
		1			1	l	1		- 1		
	DESIGN VERIFICATION USING SYSTEM VERILOG										
			(H	Ionors D	egree Co	ourse in E	ECE)				
Cour	se Objec										
1.											
	oriented programming.										
2.	2. To develop SystemVerilog interfaces for bus protocols and transaction-level modeling.										
<u> </u>		G4 1 4	•11.1	11 4							
	se Outco	mes: Students	will be a		4				T7 1 . 1		
S.No				Ou	itcome				Knowledge Level		
1.	Evnlo	in hardware ver	rification	methodo	logies fo	r specific	design challe	ngac	K2		
2.	_	fy hardware co							K2		
۷.		is natuwate co nch structures.	mponent	o using	5 y stelli V	cinog ua	a types and	complex	IXZ		
3.		n strings, unic	ons, struc	tures, er	nums, and	d events i	n SystemVe	rilog for	K2		
	verific	•	, , , , , , , , ,					11108 101			
4.	Develo	p SystemVeri	log inter	faces w	ith mod	ports and	clocking b	locks for	К3		
	verific					7 1					
5.	Utilize	reu <mark>sable v</mark> erif	ication c	ompone	nts using	object-or	riented progr	amming in	К3		
	Systen	ıVerilog.		FRIC	E	3.4.7	- 670 11				
		AST 5	£	EING	HVEE	RIIV	LULL	EUE			
		Estd. 198	0		AŲ	IUNUN	iuus				
					SYLLA	BUS					
UNI		ntroduction to	•	U		~					
(10F	Irs) S	System Verilog	testbench	n archited	cture, Ve	rilog vs Sy	ystem Verilo	g			
FILTE	TTT /	W Jo4- 4									
UNI' (10 l		SV data types: 2 state vs 4 state	variabla	a dimon	io orrovo	accomint	arrave and	te 110000			
(101	1115)	siaic vs 4 statt	variable	o, uyilall	ne arrays	, associali	arrays and I	usage			
UNI	Г_ТТТ	Advanced SV d	lata tyma	NG•							
(10 1		Strings, Unions			erated De	ata Tynes	Events				
(101	1110)	ourigo, omono	Structur	Co Liiuili	Cruica De	1 ypcs,	2,0110				
		SV interfaces:									
UNI	I-1V 6	SV Interfaces, N	Aod Ports	s, Clocki	ng Block	s Virtual l	nterface, Pro	gram Blocks	S		
(10 l	Hrs)	,					,	-			
		SV OOPs:									
UNI			eritance	This C)nerator	Super C	nerator Sh	allow Copy	, Deep Copy,		
(10 1					-	-	-		Encapsulation,		
(101				• •		-	r, 1100		,		
	Dynamic Casting, Scope Resolution Operators										

Textb	ooks:					
1.	"SystemVerilog for Verification: A Guide to Learning the Testbench Language Features" by Chris					
	Spear, third edition, springer					
2.	"Writing Testbenches: Functional Verification of HDL Models" by Janick Bergeron, second edition,					
	Springer					
Refere	nce Books:					
1	"SystemVerilog for Design" by Stuart Sutherland, Springer					
2	IEEE Standard 1800-2017: IEEE Standard for SystemVerilog—Unified Hardware Design,					
	Specification, and Verification Language					
3	"UVM Primer: A Step-by-Step Introduction to the Universal Verification Methodology" by Ray					
	Salemi, CreateSpace Independent Publishing Platform					
1	IEEE Xplore: This digital library provides access to a vast collection of technical papers, articles,					
	and standards, including the IEEE SystemVerilog standard. It's a valuable resource for in-depth					
	research and understanding of advanced topics.					
2	EDA Vendor Websites: Major Electronic Design Automation (EDA) vendors like Synopsys,					
	Cadence, and Mentor Graphics (Siemens EDA) provide online documentation, application notes,					
	and tutorials on their SystemVerilog-related tools and technologies. These resources can be very					
	helpful for practical implementation and tool-specific knowledge.					
3	Verification Academy: This website (verificationacademy.com) offers a wealth of resources on					
	hardware verification, including articles, tutorials, and online courses. It covers various verification					
	methodologies and SystemVerilog-related topics.					
	Estd. 1980					

Page **13** of **17**

		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		IV B.Tech. I Semester MODEL QUESTION PAPER			
		DESIGN VERIFICATION USING SYSTEM VERILOG			
		(Honors Degree Course in ECE)			
Tin	ne: 3		x. Ma	rks: 7	′0 M
		Answer ONE Question from EACH UNIT			
		All questions carry equal marks			
		Assume suitable data if necessary			
10 x	$\mathbf{x} \cdot 2 = 2$	20 Marks	1	ı	
			CO	KL	M
1.	a).	What is the primary advantage of using SystemVerilog over Verilog for verification?	1	1	2
	b).	Name one key component of a typical SystemVerilog testbench architecture.	1	1	2
	c).	What is the primary use of dynamic arrays in SystemVerilog?	2	1	2
	d).	What is the key difference between a dynamic array and an associative array?	2	1	2
	e).	How are enumerated data types defined in SystemVerilog?	3	1	2
	f).	What is the primary use of events in SystemVerilog?	3	1	2
	g).	What is the primary purpose of an interface in SystemVerilog?	4	1	2
	h).	What is the role of a modport in a SystemVerilog interface?	4	1	2
	i).	What is the fundamental building block of object-oriented programming in SystemVerilog?	5	1	2
	j).	What is inheritance in OOP?	5	1	2
	1				
	I		x 10 =	= 50 N	lark:
		UNIT-1			
2	a).	Explain the key differences between Verilog and SystemVerilog, focusing on features relevant to verification.	1	2	5
2.	b).	Describe the typical structure of a SystemVerilog testbench. What are the essential components?	1	2	5
		OR			
3.	a).	What are the advantages of using SystemVerilog for hardware verification compared to traditional Verilog?	1	3	5
	b).	Define the term "testbench" in the context of hardware verification. What is its purpose?	1	1	5
	1		1	-	

4	a).	Explain the difference between 2-state and 4-state data types in SystemVerilog. When would you choose one over the other?	2	3	5
4.	b).	Describe the use of dynamic arrays in SystemVerilog. How do they differ from static arrays?	2	2	5
		OR			
5.	a).	What are associative arrays, and what are some practical applications of using them in a verification environment?	2	1	5
	b).	Give an example scenario where using an associative array would be beneficial in a verification testbench.	2	3	5
		TINUTE A			
		UNIT-3			
6.	a).	How are strings handled in SystemVerilog? Give an example of a common string operation used in verification.	3	3	5
	b).	Explain the concept of a union in SystemVerilog. When might you use a union in a verification environment?	3	2	5
		OR			
	a).	What are enumerated data types, and why are they useful in hardware verification?	3	1	5
7.	b).	Describe the role of events in SystemVerilog. How can they be used to synchronize different parts of a testbench?	3	2	5
		UNIT-4			
o	a).	What is the purpose of an interface in SystemVerilog? How does it differ from a module in Verilog?	4	3	5
8.	b).	Explain the concept of modports. How do they contribute to interface design?	4	2	5
		OR			
9.	a).	What are clocking blocks, and why are they important in a verification environment?	4	1	5
	b).	Describe the use of virtual interfaces. When are they particularly useful?	4	2	5
		UNIT-5			
10.	a).	Explain the concepts of inheritance and polymorphism in SystemVerilog OOP. Give a simple example of each.	5	2	5
	b).	What is the difference between a shallow copy and a deep copy of an object? Why is this distinction important in verification?	5	3	5
		OR			
11	a).	How do parameterized classes enhance code reusability in SystemVerilog?	5	2	5
11.	b).	Describe the use of "this" and "super" keywords in SystemVerilog classes.	5	2	5
	-		-MADI		

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 10 marks

Course	Code	Category	L	T	P	С	C.I.E.	S.E.E.	Exam
B23EC	CH501	l Honors			3	1.5	30	70	3 Hrs.
						1			
	DES	IGN VERII	FICATI	ON USI	NG SYST	EM VE	RILOG LA	ABORATOR	Y
			(H	onors De	gree Cou	rse in E	CE)		
Course	Objecti	ves:							
1	To fam	iliarize stude	ents in F	IDL prog	gramming	for the o	concepts of	Digital Signa	al Processin
	(DSP), Computer Architecture and Organization.								
2	To enh	ance student	s' comp	rehensio	n of simu	lation ar	d synthesi	s methodolog	ies for Erro
	Detection and Correction, Image Processing.								
Course (Outcon	nes:							
S.No				O	utcome				Knowledg
									Level
		p HDL (Hard		-				rious digital	K3
		processing ap	-						17.0
		p HDL (Hard nications.	iware D	escription	1 Languag	ge) progra	ims for		K3
		A CONTRACTOR OF THE PARTY OF TH	vare Dec	ecription	Language) progran	ns for imag	e processing	K4
	Design HDL (Hardware Description Language) programs for image processing applications K4								
	аррпса		9/-			_	\rightarrow		
	- 9		/	ENICS	YLLABI	JS T	77011	ECE	
1	Design and implement a Finite Impulse Response (FIR) filter. Generation of bitfile, porting								
	on FPGA and Programming it.								
2	Extend the basic ALU to perform floating-point addition, subtraction, multiplication, and								
	division. Generation of bitfile, porting on FPGA and Programming it.								
3	Implement a Direct Memory Access (DMA) controller that manages data transfer between								
	memory and peripherals. Generation of bitfile, porting on FPGA and Programming it.								
	Implement Hamming Code and Cyclic Redundancy Check (CRC) for error detection and								
	correction. Generation of bitfile, porting on FPGA and Programming it.								
	Design a module that converts an RGB image to a grayscale image using the luminance								
	formula. Implement the design using behavioral modeling in Verilog. Generation of bitfile, porting on FPGA and Programming it.								
			a Progra	amming i	τ.				
	Assigni								
	Assigni		d.						
		dware Requi		7 1 222 22			Vilian Vin	a d a	
		ool that supp							
		e/Synopsys/							10
3.	Deskto]	p computer v	viui appi	ropriate C	perating	system t	nat support	s the EDA too	01S.

Refere	Reference Books:					
1	Digital Systems Design Using Verilog-Charles H. Roth.					
2	Digital Design with Verilog - Course (nptel.ac.in)					
3	https://www.sciencedirect.com/topics/computer-science/finite-impulse-response-filter					
4	https://embeddedwala.com/Blogs/embeddedsystem/what-is-dma					

