

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada)

Accredited by NAAC with 'A+' Grade

Recognised as Scientific and Industrial Research Organisation SRKR MARG, CHINA AMIRAM, BHIMAVARAM – 534204 W.G.Dt., A.P., INDIA

Regula	tion: R23									
	CIVIL ENGINEERING (Honors)									
	COURSE STRUCTURE (With effect from 2023-24 admitted Batch onwards)									
Course Code	Year/ Sem	Cr	L	T	P	C.I.E	S.E.E	Total Marks		
B23CEH101	Structural Dynam	III-I	3	3	0	0	30	70	100	
B23CEH201	Matrix Methods o	III-II	3	3	0	0	30	70	100	
B23CEH301	Earthquake Engin	eering	IV-I	3	3	0	0	30	70	100
B23CEH401	*MOOCS-I	III-I to IV-I	3	7-		-			100	
B23CEH501	*MOOCS-II	III-I to IV-I	3	F					100	
B23CEH601 *MOOCS-III				3	U\$	- L-	يا			100
			TOTAL	18	9	0	0	90	210	600

*Three MOOCS courses of any CIVIL ENGINEERING related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 12 weeks (3 Credits) courses other than the courses offered need to be takenby prior information to the concern. These courses should be completed between III Year I Semester to IV Year I Semester

	Code	Category	L	T	P	C	I.M	E.M	Exam		
B23	SCEH10	1 Honors	3			3	30	70	3 Hrs.		
				- L	I	I			1		
			ST	RUCTU	RAL DY	NAMICS	5				
			(He	onors De	egree cou	rse in CE)	1				
Cour	se Objec	tives:									
1.	Introdu	ces to the Conce	pt of vib	ration of	SDOF S	ystem					
2.	Introdu	duces to Damped and Undamped systems									
3.	Introdu	ces to Free and fo	orced Vib	ration sy	stems						
4.	Introdu	ces to Free and F	orced vib	oration O	f MDOF	System					
Cour	se Outco	omes: At the end	of the co	ourse, Stu	ident wil	be able t	0				
S.No				Outc	ome				Knowledge		
1	77.1	.4 1 1 4 1	41		C '1 4'				Level		
1.		stand and Analyz						t cDOE	K4		
2.		stand and Analyz							K4		
3.		stand and Analyz							K4 K4		
4. 5.		stand and Analys stand and Analys		•		_			K4		
3.	Ollder	stanu and Allary.	ze the col	ncepts of	Wintiple	Degree	or Freedom	ii Systeiii	N4		
			 	CV	LLABU	C	.	-			
	F	lements of vibr	ations: I				pts of vib	ration –Dvn	amic Loading-		
TINIT		Comparison of S					-	-	_		
UNI' (8 H	I P	Basic Definitions- Types Of Vibrations- Response OF the System- Degrees Of Freedom-									
(0 11	S	Simple Harmonic Motion- Consequences of Vibration-Vibration controls in the Design									
	0	fStructure									
			¥791 40	6 CT	NOT G	. T.	1	T 7'1 .' A	1		
UNI		Indamped Free Tibration of Unda			•				•		
(10 H		quation of Motion	-	-			-				
(101		nd Time Period –	-				Comome	110115 11414	rai Trequency		
				01 010	. , 1000010110	10100					
		amped Free Vi	bration	of SDO	F Syster	n: Introdu	action- Ty	pes of Dan	nping- Viscous		
UNIT	r-III D	amping- Coulo	mb dan	nping-	Structura	l Dampi	ng-Active	Damping	or Negative		
(10 H	Irs)	Damping- Coulomb damping- Structural Damping-Active Damping or Negative Damping- passive Damping- Measurement of Damping- Logarithmic Decrement method-									
	H	Ialf Power Bandy	width Me	thod							
UNIT	- I V	wo Degrees of		•			-		•		
	\	Vibrations of Undamped System-Damped Free Vibration- Forced Vibration Of Undamped System- Forced Vibration Of Damped System									
(10 H	irci							1 ofeca V	ioration or		

	Multiple Degrees of Freedom Systems: Introduction – Free Vibration Analysis						
UNI	T-V Undamped system- Natural Frequencies and Normal Modes- Orthogonality and Normalit						
(10 H	Hrs) Principles- Damped Systems- Decoupling of Equations/concept of moda						
	Superposition Method.						
Text 1	Books:						
1.	Structural Dynamics Anil K Chopra, 4edition, Prentice HallPublishers						
2.	Structural Dynamics Theory & Computation – Mario Paz, CBS Publishes and Distributors						
Refere	ence Books:						
1.	Structural Dynamics and Aseismic design – S.R.Damodarasamy and S.Kavitha, PHI Learning						
1.	private limited						
2.	Dynamics of Structures by Clough &Penzien 3e, Computers & Structures Inc.						
3.	Structural Dynamics of Earthquake Engineering - Theory and Application using Mathematical						
3.	and Mat lab- S.Rajasekharan						

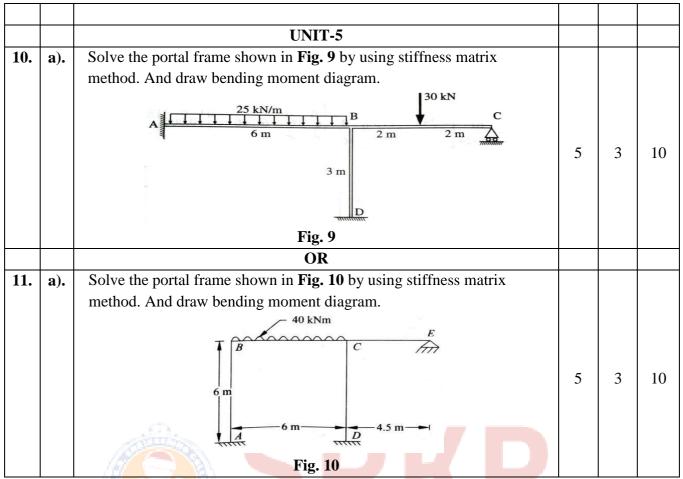
		Course C	ode: I	B23CE	H101
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. I Semester MODEL QUESTION PAPER			
		STRUCTURAL DYNAMICS			
		(Honors Degree Course in CE)			
Tim	e: 3 H	Irs. N	Iax. N	Iarks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2	= 20 N	Iarks
			CO	KL	M
1.	a).	Discuss the basic concepts involved in structural vibrations.	1	2	2
	b).	Describe the consequences of vibrations in structures.	1	2	2
	c).	Explain the influence of gravitational force on free vibration.	2	2	2
	d).	State and explain the assumptions made in undamped free vibration analysis.	2	2	2
	e).	Describe the characteristics of viscous damping.	3	2	2
	f).	Differentiate between passive and active damping.	3	2	2
	g).	Explain the concept of a shear building in vibration analysis.	4	2	2
	h).	Describe the effects of damping on forced vibration response.	4	2	2
	i).	Explain the term "mode shapes" in MDOF systems.	5	2	2
	j).	Describe the significance of decoupling equations in vibration analysis.	5	2	2
	10,	ENGINEERING COLLEGE		<u> </u>	1
		Estd 1980 AUTONOMOUS	5 x 10	= 50 N	Iarks
		UNIT-1	CO	KL	M
2.	a).	Compare Static Loading and Dynamic Loading?	1	2	5
		A Harmonic motion has a Maximum Velocity of 6 m/s and it has a			
	b).	frequency of 12 cps. Determine its amplitude, its period and its	1	3	5
		Maximum acceleration.			
		OR			
3.	a).	Define i) Natural Frequency ii) Amplitude ii) Degree of Freedom	1	2	5
	b).	Explain Vibration and Types of Vibration?	1	2	5
		UNIT-2			
4.	a).	Derive expression for response of SDOF system subjected to Undamped free vibration	2	3	10
		OR			
5.	a).	Derive the equation of motion of a vibratory system using Simple Harmonic Motion	2	3	10
		UNIT-3			
6.	a).	Explain Logarithmic Decrement Method for Measuring damping of a vibration System? Page 4 of 15	3	2	5

	b).	Explain Damping and Various Types of Damping?	3	2	5
	-	OR			
7.	a).	Derive expression for response of SDOF system subjected to damped free vibration	3	3	10
		UNIT-4			
8.	a).	Determine the Natural Frequencies and mode Shape of the given system.	4	3	10
		OR			
9.	a).	Determine the natural Frequencies and mode shape for the structure as shown in below figure. $ \frac{m_2 = 660 \text{ kg}}{2.5 \text{ m}} $ $ \frac{2.5 \text{ m}}{2I} $ $ \frac{1}{5 \times 10^5 \text{ mm}^4} $ $\frac{1}{5 \times 10$	4	3	10
		VINITE 5			
10.	a).	UNIT-5 Derive the equation of motion of Multi Degree freedom systems (MDOF)	5	4	10
		OR			
11.	a).	Determine the Natural Frequencies and the mode Shapes for the Shear building as shown in below figure. $m=1$ $k_1 = 600 \text{ kN/m}$ $m=1.5$ $k_2 = 1200 \text{ kN/m}$ $k_3 = 1800 \text{ kN/m}$	5	4	10
CC)-CO	URSE OUTCOME KL-KNOWLEDGE LEVEL	N	I-MAI	RKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

	Code	Category	L	T	P	C	I.M	E.M	Exam		
B23	SCEH20	1 Honors	3			3	30	70	3 Hrs.		
				1			1				
		N	IATRIX	METHO	ODS OF	STRUCT	TURES				
			(He	onors De	gree cour	rse in CE)					
Cour	se Objec										
1.		are the students t and Stiffness ma			owledge i	in the mat	rix metho	ds such as fl	exible matrix		
2.	To prep	are the students t	o analyze	e the bear	ns and po	ortal fram	e problem	s by matrix	methods.		
Cour	se Outco	omes: At the end	of the co	urse, Stu	dent will	be able to)				
S.No				Outco	ome				Knowledge Level		
1.	using r	stand the basic on matrix methods.					f structura	l elements	K2		
2.		ze the beams by u							K4		
3.		ze the portal fram					d.		K4		
4.		ze the beams by u							K4		
5.	Analyz	ze the portal fram	es by usi	ng Stiffn	ess matri	x method	. /		K4		
					LLABUS						
UNI (8 H	rs) s	Introduction: Matrix methods of analysis—Static and kinematic indeterminacy—Degree of static and kinematic indeterminacy—Structure idealization—flexibility and stiffness methods. 1980									
UNI'		Tlexibility Matri				sis of co	ntinuous 1	peams witho	ut sinking of		
(10 H	irs) s	upports (up to ma	ximum a	egree or i	nree)						
UNIT (10 F		Tlexibility Matri ondition (up to m		`		s): Analy	rsis of por	rtal frames v	vithout sway		
UNIT (10 H		Stiffness Matrix upports (up to ma				sis of con	itinuous b	eams withou	at sinking of		
(101	118) 8	upports (up to ma	XIIIIuIII u	egree or t	ince)						
	Γ-V S	Stiffness Matrix	Method	(Portal	Frames): Analys	sis of por	tal frames v	vithout swav		
UNI		ondition (up to m)	,15 01 P01	,	, resistant s , , as		
UNI' (10 H	-	` 1									
UNI' (10 F											
(10 H	Books:										
(10 H		analysis of struct	ures,Rob	ert E Sen	net-Pren	tice Hall-l	Englewoo	d cliffs-New	Jercy		
(10 F	Matrix	analysis of struct									

Refer	Reference Books:								
1.	Indeterminate Structural analysis, C K Wang, Amazon Publications.								
2.	Matrix Analysis of Frame dVan Nostrand Reinhold, New york Structures 3e-William We aver,Jr,James M.Gere,								
3.	Foundation Analysis and design, J.E.Bowls, 5e, Amazon Publications.								



		Course Co SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. II Semester MODEL QUESTION PAPER			112.
		MATRIX METHOD OF STRUCTURES			
		(Honors Degree Course in CE)			
[im	e: 3 l		ax. M	arks:	70 N
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
		1	0 x 2 =	= 20 N	Iark
			CO	KL	M
1.	a).	Define static and kinematic indeterminacy of a structure.	1	2	2
	b).	Differentiate between flexibility and stiffness methods.	1	2	2
	c).	Explain the procedure to form a flexibility matrix for a two-span	2	2	2
		continuous beam.			
	d).	Compute the degree of static indeterminacy for a continuous beam with	2	2	2
		three supports.			
	e).	List the steps in analyzing a portal frame using the flexibility method	3	2	2
		under non-sway conditions.			
	f).	Determine the static indeterminacy of a fixed-base portal frame and	3	2	2
		identify the redundants.			
	g).	State the advantages of the stiffness method over the flexibility method	4	2	2
		in beam analysis.			
	h).	List the basic assumptions made in the stiffness matrix method for beam	4	2	2
		analysis.td. 1980 AUTOMOMOUS			
	i).	Explain the assembly procedure of the global stiffness matrix for a portal	5	2	2
		frame.			
	j).	Solve for member end moments of a simple portal frame using the	5	2	2
		stiffness method.			
		5	x 10 =	= 50 N	<u>Iark</u>
		UNIT-1	CO	KL	M
2.	a).	Explain degree of static indeterminacy and kinematic Indeterminacy	1	2	4
		of a structure.			
	b).	Calculate degree of Static and Kinematic indeterminacy of the			
		following structures (Fig. 1)			
			1	3	6

	1		ı	T	T I
		(a)			
		(b)			
		fin (c) ₩			
		1 2 3			
		2 3 4 5			
		1 6 5 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
		(d) 10 11 12			
		Fig. 1			
		OR			
3.	a).	Explain relation between flexibility matrix method and stiffness	1	2	4
	<i>u)</i> .	matrix	_		•
		method.			
	b).	Develop stiffness matrix for the beam shown in Fig. 2 with reference			
	50	to the co-ordinates shown.			
		- 11 111 20 01 01111111			
		$A \rightarrow 3$	1	3	6
		1	1	3	6
		EI constant 2			
		Fig. 2			
		UNIT-2 EDINIC COLLECT			
4.	a).	Solve the continuous beam as shown in the Fig.3 by using flexibility			
		matrix method. Take EI is constant throughout the structure. Draw			
		bending moment and diagrams			
		100 <u>kN</u> 60 <u>kN</u>	2	3	10
			2	3	10
		$A \longrightarrow B$			
		2 m 2 m 2 m			
		Fig. 3			
		OR			
5.	a).	Solve the continuous beam shown in Fig. 4 by using stiffness			
		matrix method. And draw bending moment diagram.			
		20 kN 30 kN			
		B 40 kN/m C	2	3	10
		2 m			10
		A 2I I I I I I I I I I I I I I I I I I I			
		Fig. 4			
		8 · -			
		UNIT-3			
	l		1	1	

Page **9** of **15**

6.	a).	Solve the portal frame shown in Fig. 5 by using flexibility matrix			
		method. And draw bending moment diagram.			
		40 kN			
		$B \subset C$			
		3 m			
			3	3	14
		3m			
		6 m			
		Fig. 5			
		Fig. 5 OR			
7.	a).	Solve the portal frame shown in Fig. 6 by using flexibility matrix	3	3	10
'		method. And draw bending moment diagram.			10
		✓ 40 kNm			
		lack B			
		6 m			
		6 m			
		EN Fig. 6 EERING COLLEGE			
		Estd. 1980 AUTONOMOUS			
		UNIT-4			
8.	a).	Solve the continuous beam as shown in the Fig. 7 by using			
		stiffness matrix method. And draw bending moment diagram.			
		50137/19 120137			
		50 kN/m 120 kN		_	
		$A \longrightarrow A \longrightarrow$	4	3	14
		A B Some Sum			
		4.0 m 1.5 m 1.5 m			
		Fig. 7			
		OR			
9.	a).	Solve the continuous beam as shown in the Fig. 8 by using stiffness			
		matrix method. And draw bending moment diagram.			
		12 kN/m			
		20 kN-m			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3	10
1	1				
		40m			
		4.0 m 1.0 m 2.0 m			
		4.0 m 1.0 m 2.0 m Fig. 8 Page 10 of 15			

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

Estd. 1980

AUTONOMOUS

C	ode	Category	L	T	P	C	I.M	E.M	Exam		
B230	CEH301	Honors	3			3	30	70	3 Hrs.		
							I				
			EART	HQUA	KE ENG	INEERI	NG				
			(Но	nors De	gree cou	rse in CE)				
Cours	e Objectiv	ves:									
1.	To learn	the fundame	entals of	seismol	logy and	basic ea	arthquake	mechanism	ns, tectonics		
	types of	Ground motic	on and pro	pagatio	n of grou	ınd motio	n.				
2.	Learn the	Learn the fundamentals of building code based structural design									
Cours	e Outcom	es: At the en	d of the c	ourse, S	tudent w	ill be able	e to				
S. No				Outco	ome				Knowledge		
4	T T T	1 71				10 70 11	•	1.0.1.1	Level		
1.		and Element	s of Seis	mology	and clas	sify Earth	iquakes a	and Seismic	K2		
2.		Map of India and Earthqua	dza Dagne	ngo Sno	otrum				K2		
3.		ne the lique			and ab	le to und	derstand	concept of	K3		
1		Design of R			a man IC 1	902 (DAI	т 1).200	12	IZ A		
4.	- /2	and Design of							K4		
5.		Ductile Detai	ling of R	C Struc	tures Sul	ojected to	Seismic	Forces As	K4		
	per IS 39	020:1993		4			₹				
		<u> </u>	-FN	CXZ	LLABUS	ING (-701-	FGF-			
	10	Ld. dono c					D .1	1 Tl	Tl		
UNI									ry- Theory of		
(10 H		1									
(101		Earthquake- Tsunami-Seismic Zoning Map of India.									
	R	esponse Spec	ctrum- In	troducti	on- Resp	onse Spe	ectrum o	f Sinusoidal	pulse-Water		
UNI	T-I Ta	Tank Subjected to base Acceleration-Earthquake Response Spectra-Design Spectra-									
(10 H	Hrs) C	oncepts of F	PGA-Site	-Site S	Specific	Response	e Spectra	a-Response	Spectrum IS		
	1893:2002										
	1										
		•				-			Liquefaction-		
UNIT		Methods to Reduce Liquefaction-Factors Controlling Liquefaction - Concept of Aseismic Design of RC Structures - Introduction- Design Methodology-									
(10 I	· ·		O					Ū	•		
		rchitectural onsideration -							tural Design		
		onsiucialion -	– Capacii	y Design	n- 160111	iques oi F	790191111C	Design			

UNI	T-IV	Seismic Analysis of RC Building As per IS1893 (PART 1):2002: Introduction-						
(10]	Hrs)	General Principles- load combinations and Increase in Permissible Stresses -						
		Design Spectrum- Buildings-Dynamic Analysis- Torsion- Step by Step Procedure						
		For Seismic Analysis of RC Buildings						
		Ductile Detailing of RC Structures Subjected to Seismic Forces As per IS						
UNI	T-V	3920:1993: Introduction- Design of Flexural Members- Longitudinal						
(8 H	Hrs)	Reinforcement- Web Reinforcement- Design of Columns and Frame Members						
		Subjected to Bending and Axial load- Design of joints of Frames						
Text I	Books:							
1.	Eartho	quake Resistant Design of Structures Pankaj Agarwal and Manish ShriKhande,						
	Prenti	ce -Hall of India, 2007, New Delhi.						
2.	Struct	ural Dynamics and Aseismic design - S.R.Damodarasamy and S.Kavitha, PHI						
	Learn	ing private limited						
Refer	ence Bo	ooks:						
1.	Earthquake Resistant Design of Structures- S.K. Duggal, Oxford Publications							
2.	Seismic design of reinforced concrete and masonry buildings by Paulay and Priestley							
3.	Eartho	quake Resistant Design and Risk Reduction- David Dowrick						

		Course C	ode: B	323CE	H301
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		IV B.Tech. I Semester MODEL QUESTION PAPER			
		EARTHQUAKE ENGINEERING			
		(Honors Degree Course in CE)			
Tim	ne: 3 F		Iax. M	larks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2		
			CO	KL	M
1.	a).	Give the classification of earthquakes based on magnitude.	1	1	2
	b).	Define Tsunami.	1	1	2
	c).	Define response spectrum.	2	1	2
	d).	What is site specific response spectra?	2	1	2
	e).	Define pounding.	3	1	2
	f).	Differentiate between local and global ductility.	3	2	2
	g).	List the type of irregularities in buildings.	4	1	2
	h).	What are the load combinations accounted in limit state design?	4	1	2
	i).	Write the codal provision regarding lap splice in longitudinal reinforcement in columns.	5	1	2
	j).	Mention the any two requirements of web reinforcement in flexural members.	5	1	2
		Estd. 1980 AUTONOMOUS			I
			5 x 10	$= 50 \mathrm{I}$	Marks
		UNIT-1			
2.	a).	What is plate tectonic theory of origin of earthquakes and explain	1	2	10
		associated type of movement at the plate boundaries.			
		OR			
3.	a).	Explain the characteristics of different types of seismic waves.	1	2	6
	b).	Explain the concept of elastic rebound theory with a neat sketch.	1	2	4
		UNIT-2			
4.	a).	Explain Response Spectrum of Sinusoidal Pulse?	2	2	10
		OR			
5.	a).	Explain the Response Spectrum of Water Tank Subjected to Base Acceleration?	2	2	10
		UNIT-3			
6.	a).	Explain Types of Liquefactions and Effects of Liquefaction of Soils.	3	2	5
	b).	Explain Methods to Reduce Liquefaction.	3	2	5
	1 /	I	l .	l .	1

		OR			
7.	a).	Explain Design Methodology according to Architectural, Geotechnical	3	2	10
		and Structural Design Considerations			
		UNIT-4			
8.	a).	Explain general Aseismic Design Principles	4	2	10
		OR			
9.	a).	Determine the design horizontal Seismic Coefficient for an ordinary	4	3	10
		reinforced concrete moment resisting Frame hospital building without			
		infill panels for a damping of 5 %. The building is Situated in Salem.			
		Height of the Building is 22m and it is resting on Hard Soil.			
		UNIT-5			
10.	a).	Explain Ductile Design of Flexural Members?	5	2	10
		OR			
11.	a).	Explain Ductile Design of Columns and Frames Subjected to Bending	5	2	10
		and Axial Load?			

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

ENGINEERING COLLEGE
AUTONOMOUS